If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+22t-140=0
a = 4.9; b = 22; c = -140;
Δ = b2-4ac
Δ = 222-4·4.9·(-140)
Δ = 3228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3228}=\sqrt{4*807}=\sqrt{4}*\sqrt{807}=2\sqrt{807}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{807}}{2*4.9}=\frac{-22-2\sqrt{807}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{807}}{2*4.9}=\frac{-22+2\sqrt{807}}{9.8} $
| 8-2x+x=56 | | 7/2-2=4+4t | | n^2-7n+50=0 | | 10•1/2x•4=-40 | | 22.5a=70.65 | | (X-9)×32=x×24 | | 5x=45,x=7 | | 5(6x-8)=190 | | X+35=3x/5 | | x=35/3x | | X=3x/35 | | (3/4–4x)(2/3+6x)=0 | | 10x-3/4=3-x | | Y=0.19*x+x | | 7x+14=8x-16 | | 5p-8=6p-20 | | 6x^2-29+20=0 | | 2a-4=28 | | 4-7i=17 | | 21=6j+3 | | 4x-9=47-4x | | 3i=18 | | 9-3d=-9 | | 3w^2+49w^2+60=0 | | A=49x^2+28x+4 | | 11/x=4/9 | | 9+9x=~23x+x | | 9+9x=-23x+x | | 5x-6=-3x-8 | | 5+4x-7=2x+8 | | 2x=(1/32)-3 | | 5h-36=-7h |